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Classical diffusion in channels with a spatially varying cross-section
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We study the diffusion of classical particles in channels with varying boundaries. The problem is character-
ized by the Neumann boundary condition~zero normal current! in contrast to the Dirichlet boundary condition
~zero function! for ‘‘quantum confinement’’ problems. Eliminating transverse modes, we derive an effective
diffusion equation that describes particle propagation in the space of reduced dimension in the presence of a
frozen drift field. The latter stems from boundary variations of the original boundary problem. Boundary
variations may thus result in an appreciable change of the particle transport and, in particular, in a nonlinear
response to an external field. We show also that there is a difference between the nonlinear responses of open
and closed channels.
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I. INTRODUCTION

Diffusion of classical particles in a spatially random tim
independent velocity field continue to attract interest. Ea
studies~see@1–4# and references therein! have revealed vari-
ous anomalous diffusion regimes that may take place fo
long-range correlated velocity field. It has been also sho
@4# that the considered classical model possesses nonse
eraging effects, which bear resemblance to mesoscopic
fects of ~quantum! weak localization@5#. Recently this clas-
sical model has attracted renewed attention, motivated
particular, by the interest in properties of random no
Hermitian operators@6#, chemical reactions in disordere
media@7#, etc.

In contrast to previous studies of classical diffusion
random but unbounded media, here we consider a diffe
physical situation, namely, the classical diffusion in a ch
nel ~slab, pipe, wire, etc.! with time-independent spatia
variations of the channel boundary. We are looking for cl
sical analogies to~and differences with! confinement effects
known for ‘‘quantum’’ particles. In the latter case these e
fects are due to spatial variations of the energy of the part
tranverse motion~confinement energy!. These variations re
sult in the appearance of a random potential in an effec
~Schrödinger! equation for the particle propagation along t
channel~in a space of reduced dimension!. Of course, this
phenomenon is not restricted to quantum particles bu
common for any wave obeying the Dirichlet boundary co
dition ~zero amplitude!. On the contrary, the classical diffu
sion is characterized by the Neumann condition~zero normal
current! at the channel boundary. We show that this leads
quite a different form of an effective equation for the moti
along the channel: there appears a space-dependent fie
frozen drift forces~velocities!. Thus, the original boundary
problem@see Eqs.~1! and~2! below# is mapped on the above
mentioned problem Eq.~23! of classical diffusion in un-
bounded media in the presence of a frozen random velo
field @Eqs. ~24! or ~36!#. The arising velocity field corre-
sponds to potential fIows, which is the consequence of
1063-651X/2001/64~3!/031108~7!/$20.00 64 0311
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Hermitian nature of the original boundary problem. The
fore, long-range correlated variations of the channel bou
ary may result in a subdiffusion regime in accordance w
earlier findings for the unbounded diffusion in the presen
of random potential flows@2–4#. Furthermore, we conside
another interesting feature of classical diffusion in chann
with spatially varying boundaries: a nonlinearity of the r
sponse to an external force, that occurs even for field in
pendent bare values of kinetic parameters and that is ab
for channels with a constant cross section. We also dem
strate that there is a remarkable difference in nonlinear
sponses of open Eq.~42! and closed Eq.~47! channels to an
external force applied along the channel. This differen
~vanishing in the linear regime! bears resemblance to a di
ference in some physical properties of open and closed
soscopic samples@8,9#.

This paper has the following structure. In Sec. II we p
form a transformation of coordinates that maps the origi
problem with the varying boundary to a problem with fl
boundary but with modified boundary conditions. We deri
equations for transverse harmonics of the Green’s functio
the transformed equation, using a weak coupling between
zero and nonzero harmonics. In Sec. III we consider sm
variations of the boundary; eliminating the nonzero harm
ics we obtain an effective diffusion equation for the lon
scale limit of the original problem. This equation contains
frozen drift field as well as a spatial modulation of the d
fusion coefficient. In Sec. IV we consider the case of rand
drifts ~random variations of the channel boundary! and cal-
culate corrections to the effective diffusion coefficient f
disorder averaged propagation. In Sec. V an effective di
sion equation is derived for the case of nonsmall but smo
variations of the channel boundary. In Sec. VI we discuss
more detail the particular case of stationary diffusion throu
an effectively one-dimensional channel under the action
an external force. The nonlinear current response is ca
lated for open and closed channels with smoothly vary
boundaries. In conclusion we summarize and discuss the
tained results.
©2001 The American Physical Society08-1
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II. BASIC EQUATIONS

A. Formulation of the problem

First we consider a channel in the form of a film of ave
age thicknessLz with the upper and lower boundariesz
5 f u(r ) and z5 f l(r ) ( f l, f u); r is a radius vector in the
d-dimensional (d52 for a film or d51 for a surface chan
nel! subspace orthogonal to thez axis. Later in the paper we
shall consider also channels with more complicated bou
aries.

The Green’s function of the diffusion equation in the fil
obeys the equation

@2 iv2D“

2#G~r,z;r8,z8!5d~z2z8!d~r2r8! ~1!

and the Neumann boundary condition~zero normal current!

~n•“ !G~r,z;r8,z8!urPB50 ~2!

on the film boundaryB. In Eqs. ~1! and ~2! D is the bare
diffusion coefficient;“5(]/]r a ,]/]z), a51, . . . , d; and
n is the normal vector to the boundary surface:n
}@2] f (r )/]r a ,1#. We are interested in small frequenc
(v!D/Lz

2), long-distance (ur2r 8u@Lz) properties of the
diffusion propagator; our task is to obtain an effective eq
tion for a reduced function

G~r,r8!5E
f l (r)

f u(r)
dzE

f l (r8)

f u(r8)
dz8

G~r,z;r8,z8!

f u~r8!2 f l~r8!
, ~3!

which describes macroscopic transport along the channe~in
the space of the reduced dimensiond) from a source located
at a pointr 8. In the definition~3!, integration overz8 ~with a
weight @ f u(r 8)2 f l(r 8)#21) corresponds to a source of un
power spread uniformly along thez direction of the film,
rather than to a source concentrated at some pointz85z0.
However, the difference between the two variants vanishe
the macroscopic limit of interest.

B. Derivation of basic equations

In the analysis of the problem formulated in Eqs.~1! and
~2!, it is convenient to use a trick known in the theory
light scattering from rough surfaces, namely, to perform
coordinate transformation that makes the boundaries flat
simplify the following expressions, below we restrict th
derivation to the simpler case where only the upper bound
varies, while the lower one is flat (f l50). In this case, we
use new coordinates:

ra5r a ; h5zLz / f u~r!, ~4!

~the lower index ‘‘u’’ will be omitted below! which make the
boundaryB flat (B5B11B2 ; B1 : h5Lz ; B2 : h50).
Equation~4! induces the transformation of derivatives:

]/]r a5]a2~]a ln f !h]/]h; ]/]z5~Lz / f !]/]h, ~5!

where]a[]/]ra . In the new coordinates, Eq.~1! for

G~r,h;r8,h8!5G~r,z;r8,z8! ~6!
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@2 iv2D~]a
21]2/]h21Û~r,h!!#G~r,h;r8,h8!

5d~r2r8!d~h2h8!Lz / f ~r8!, ~7!

where the factorLz / f (r8) on the right-hand side stems from
the Jacobian of the transformation~4!, and the operatorÛ is

Û~r,h!52@2~]a ln f !]a1~]a
2 ln f !#h]/]h

1~]a ln f !2~h]/]h!21@Lz
2/ f 221#]2/]h2.

~8!

A generalization of Eq.~4! for two varying boundaries is
straightforward: h5Lz(z2 f l)/( f u2 f l). In an equivalent
form it has been used recently@10# for studying transport
processes in rough films, with the boundary roughn
treated as the reason of the momentum relaxation of parti
~waves! propagating ballistically in the bulk of the film. A se
of physical problems considered in@10# corresponds to the
Dirichlet boundary condition~vanishing amplitude:CuB
50) that remains invariant under the coordinate transform
tion. On the contrary, for the diffusive motion considered
the present paper, we face a more complicated situatio
the Neumann boundary condition~2! is affected by the trans
formation and takes the form

@]/]h2V̂h~r!#G~r,h; r8,h8!50 ath50, Lz . ~9!

Here

V̂050; V̂Lz
5

f ]a f

Lz@11~]a f !2#
]a . ~10!

Thus, the original problem is reformulated now for the fl
boundaries but with perturbation terms both in Eq.~7! and in
the boundary condition Eq.~9!. To develop a regular pertur
bative treatment, we introduce a Green’s functionG (0)(r
2r8;h,h8) of an unperturbed problem. This function is d
termined by the equation

@2 iv2D“j
2#G (0)~r2r8;h,h8!5d~j2j8!, ~11!

~where shortened notationsj5(r,h) and“j
2[]a

21]2/]h2

are introduced! and by the Neumann boundary condition
the flat boundaries

]/]hG (0)~r2r8;h,h8!50 ath50, Lz . ~12!

Following the usual method~see, e.g., Ref.@11#! we multiply
Eq. ~7! by G (0) and Eq.~11! by G, and integrate their differ-
ence. With the use of Green’s theorem and the bound
conditions~9! and ~12!, we arrive at the following integra
equation forG:
8-2
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G~j;j8!5G (0)~r2r8;h,h8!Lz / f ~r8!

1DE dr1@G (0)~r2r1 ;h,h1!V̂h1
~r1!

3G~j1 ;j8!#h150
h15Lz1DE dj1G (0)~r2r1 ;h,h1!

3Û~j1!G~j1 ;j8!. ~13!

Now we sketch main steps of the further evaluation. In
basis of eigenstates of the unperturbed problem, the func
G (0)(r2r8;h,h8) may be represented as

G (0)~r2r8;h,h8!5
1

Lz
G 0

(0)~r2r8!1
2

Lz
(
n.0

G n
(0)~r2r8!

3cosS pnh

Lz
D cosS pnh8

Lz
D , ~14!

where the Fourier transform of the functionsG n
(0)(r) is

G n
(0)~q!5@2 iv1Dq21Dp2n2/Lz

2#21. ~15!

Integrating Eq.~13! over h8 we obtain an equation for th
function

G~r,r8;h!5E
0

LzG~r,h;r8h8!dh8/Lz . ~16!

The equation forG(r,r8;h) derived in this way differs from
Eq. ~13! only by the first term on the rhs: the functio
G (0)(r2r8;h,h8) is replaced by its zero transverse ha
monic G 0

(0)(r2r8). Looking for G(r,r8;h) in the form

G~r,r8;h!5
1

Lz
G~r,r8!1

2

Lz
(
n.0

Gn~r,r8!cosS pnh

Lz
D ,

~17!

we obtain an infinite system of coupled equations for tra
verse harmonicsG(r,r8) andGn(r,r8). Note that because o
the weak convergency of the series Eq.~17! near the bound-
ary, one may not interchange the summation overn and dif-
ferentiation with respect toh. Therefore, before applying Eq
~17!, some care is needed with respect to terms ofÛ that
contain derivatives with respect toh: using integration by
parts, the action of these~transverse! derivatives may be
transferred to the unperturbed functionG (0)(r2r8;h,h8).
Surface terms arising in the course of the integration by p
are added to those present already in Eq.~13!. Due to the
elimination of fast transverse derivatives, this integration
parts leads to a system of equations forG(r,r8) and
Gn(r,r8), with improved convergence with respect to t
perturbative exclusion of nonzero transverse harmon
Gn(r,r8) with n.0.

Here we apply this general routine to derive an effect
equation for the zero transverse harmonicG(r,r8). This is
possible if variations of the channel boundary are relativ
small (ud f u/ f !1) or smooth on the scale ofLz
(Lzu]a f u! f ). The two conditions may be written asu]a f u
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!1. Taking into account terms up to second order in
small quantityu]a f u!1 we obtain the following equation
for the transverse harmonics:

F2 iv2D]a
22

DLz

f 2~r!
V̂Lz

(r)GG(r,r8)

5d(r2r8)
Lz

f ~r!
12DF Lz

f 2~r!
V̂Lz

(r)1Û1(r)G
3 (

n.0
~21!nGn~r,r8!, ~18!

F2 iv2D]a
21D

p2n2

f 2~r!
GGn~r,r8!

5~21!n
DLz

f 2~r!
V̂Lz

~r!G~r,r8! ~19!

with Û152@2(]a ln f)]a1(]a
2 ln f)#.

In the following section we consider the case of sm
channel boundary variations. Later we shall also discuss
case of arbitrary but smooth boundary variations.

III. SMALL BOUNDARY VARIATIONS

A. Effective diffusion equation

To treat the case of small boundary variations we wr
the functionf (r), determining the channel~upper! boundary
z5 f (r), in the form,

f ~r!5Lz@11h~r!#, ~20!

with h!1. The coupling of different transverse harmonic
G(r,r8) and Gn(r,r8) is determined by the small functio
h(r ). From Eq.~18! we find for Gn(r,r8):

Gn~r,r8!5
~21!nD

Lz
E dr1G n

(0)~r2r1!V̂Lz
~r1!G~r,r8!,

~21!

valid in the first order inh. Using Eq. ~19! to substitute
nonzero harmonicsGn(r,r8), which enter Eq.~18!, we find
eventually a closed equation forG(r,r8) valid up to the sec-
ond order inh. Comparing Eqs.~3!, ~16!, and~17!, we find
that G(r,r8) differs only by a factor from the function o
interestG(r,r8) :

G~r,r8!5@Lz / f ~r!#G~r,r8!. ~22!

This factorLz / f (r) stems from the Jacobian of the coord
nate transformation.~Note, that after eliminating the trans
verse coordinate, we do not need to distinguish anymore
tween coordinatesr andr in the longitudinal subspace of th
reduced dimensiond). Using Eq.~22! we arrive at the fol-
lowing equation forG(r,r8):

$2 iv1]a@va~r!2D̂a,b]b#%G~r,r8!5d~r2r8!. ~23!
8-3
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V. I. YUDSON AND P. REINEKER PHYSICAL REVIEW E64 031108
In Eq. ~23!

va~r!5D@12h~r!#]ah~r!, ~24!

and the symbolic operator notationD̂a,b]b . . . means

@D̂a,b]bG#~r,r8!5DE dr1$da,bd~r2r1!

2DLz@]ah~r!#F~r2r1!

3@]1bh~r1!#%]1bG~r1 ,r8!, ~25!

where the Fourier transform of the functionF(r) is given by

F~q!5
2

Lz
(
n.0

1

@2 iv1Dq21p2n2D/Lz
2#

. ~26!

The function F(r)5G (0)(r,0;0)2G 0
(0)(r) decays fast at

distancesr.Lz .
The effective diffusion equation~23! guarantees the par

ticle conservation law. Equations~23!–~25! fulfill the pro-
gram formulated in the Introduction: the complicated pro
lem of diffusion in a (d11)-dimensional channel of variabl
thickness is reduced to the simpler problem of diffusion in
uniform d-dimensional layer in the presence of a frozen fie
The latter class of problems allows for a regular fie
theoretical treatment. The frozen field~24! is a potential
field, which corresponds to the model 3 of@2,4#. In the
present section the reduction has been performed for the
of small boundary deviations,uhu!1.

Now we use Eqs.~23!–~25! to calculate a correction to
the bare diffusion coefficient.

B. Corrections to the diffusion coefficient

Consider random variations of the channel thickne
which are of Gaussian nature with zero average^h(r )&50
and the correlation function

^h~r!h~r8!&k5G~ uku!, ~27!

wherek is a wave vector in the longitudinal subspace. W
look for the averaged Green’s function

G~r2r8!5^G~r,r8!&5@Ĝ02Ŝ#21~r2r8!, ~28!

whereG0(q)5@2 iv1Dq2# is the unperturbed solution t
Eq. ~23! ~for h50), and the self-energy partS is caused by
the perturbation~i.e. h-dependent terms!. In the second orde
in the small variationh, S5Sv1SD is given by the sum of
contributions from the drift term and from theh-dependent
part on the rhs of Eq.~25!, respectively. These contribution
have the form

Sv~q!5
D2

V (
k

kakbG~k!~ka2qa!qbG0~k2q! ~29!

and
03110
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SD~q!5
D2Lzqaqb

V (
k

kakbG~k!F~k2q!. ~30!

In the macroscopic limitv, q→0, the self-energy part is
quadratic inq: S'2dDq2, which leads to the renormaliza
tion of the bare diffusion coefficientD: D→Deff5D1dD.
From Eqs.~29! and ~30! we obtain the following contribu-
tions todD5dDv1dDD :

dDv

D
52

1

dV (
k

G~k!52
1

d
G~r50! ~31!

and

dDD

D
52

DLz

dV (
k

k2F~k!G~k!. ~32!

The validity of Eqs.~31! and~32! is restricted to the pertur
bative case of relatively small corrections. The relative i
portance of two contributions Eqs.~31! and~32! depends on
the ratio between the average channel thicknessLz and the
correlation lengtha of the boundary variations.

1. a™L z

In this case of short-range variations the summation o
n in Eq. ~26! may be substituted by an integration, so th
F(k)'F(0)51/(Dk) and we obtain,

dDD /D52Lz /~dV!(
k

kG~k!. ~33!

This contribution is by a factorLz /a@1 greater than Eq.
~31!. This means that for short-range boundary variations
‘‘fluctuations of the diffusion coefficient’’ @h-dependent
terms in~25!# in Eq. ~23! prevail.

2. ašL z

The summation overk in Eq. ~32! is restricted tok
,1/a!1/Lz , so thatF(k)'F(0)5Lz /(3D), and we obtain,

dDD

D
52

Lz
2

3dV (
k

k2G~k!. ~34!

Apparently, this contribution is by a factor (Lz /a)2!1
smaller than Eq.~31!. We have arrived at the conclusion th
for relatively smooth variations the drift term in Eq.~23! is
the leading one, while theh-dependent terms in Eq.~25! are
irrelevant. This statement remains valid also for nonsmall
smooth boundary variations that are considered in the
lowing section. Note that Eq.~31! together with the expan
sion S;q2 is valid under the assumption that sums ov
wave vectorsk are well convergent at smallk ~convergence
at largek is always implied!. This means that the boundar
variations are not too long-range correlated in space.
case of anomalously long-range correlations@e.g., G(k)
;1/k2 in the two-dimensional (d52) case, which corre-
sponds to the model 3 of@2,4## needs more care. The contr
bution of the drift term not only is the dominant one, but it
8-4
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CLASSICAL DIFFUSION IN CHANNELS WITH A . . . PHYSICAL REVIEW E64 031108
so large that the perturbation treatment should be substit
by a more sophisticated renormalization group~RG! analy-
sis. Due to the established mapping of the original probl
of the variable thickness channel on the problem of the
fusion in an unbounded space with frozen random drifts,
corresponding RG analysis@2–4# developed for the latte
problem is directly applicable to the former problem.

IV. SMOOTH BOUNDARY VARIATIONS

In contrast with previous section, here we do not assu
smallness of boundary variations. Instead, we assume
function f (r) to be smooth on the scaleLz; f : ]a f !1. This
allows for the adiabatic approximation in Eq.~19!,

Gn~r,r8!5
~21!nLz

p2n2
V̂Lz

~r!G~r,r8!. ~35!

Using Eqs.~35!, ~18!, and ~22!, we arrive at an effective
diffusion equation ind-dimensional subspace. This equati
has the standard form~23!, with the drift velocity and the
diffusion coefficient determined by

va~r!5D]a ln f ~r! ~36!

and

D̂a,b~r!5D@da,b2]a f ~r!]b f ~r!/3#. ~37!

In case of small and smooth boundary variations, these
pressions coincide with Eqs.~24! and ~25!, respectively. As
has been shown in the previous section, in case of sm
variations the space-dependent fluctuations of the diffus
coefficient are irrelevant, and the macroscopic kinetic co
ficients are mainly influenced by the drift term.

It may be shown that Eq.~36! remains valid also for the
case of smooth variations of both upper and lower chan
boundaries with the functionf (r) equal to the variable chan
nel thickness. In general, channels bounded in severa
mensions with smoothly varying boundaries are described
the same effective diffusion equation~23! with the drift term
~36!, wheref (r) is the varying cross section of the chann
Below we shall consider an important particular case o
one-dimensional channel (d51) that allows for a more de
tailed analytical treatment.

V. ONE-DIMENSIONAL CHANNEL WITH SMOOTHLY
VARYING CROSS SECTION

A. Current through the channel

Consider a one-dimensional channel of lengthL with
smoothly varying cross sectionf (x) (x—the coordinate
along the channel, 0,x,L). For this particularly simple
case we shall rederive the basic equations by means
simple physical reasoning. Namely, we take into account
for a long channel (L@Lz) the densityr of diffusing par-
ticles is almost constant in the transverse direction and
smoothly varying functionr(x) of the longitudinal coordi-
nate. The current density inx direction is given by
03110
ed

f-
e

e
he

x-

th
n
f-

el

i-
y

.
a

a
at

a

j x~x!5mFr~x!2D]xr~x!, ~38!

where we introduced also a constant forceF acting on the
particles;m is the mobility connected withD by the Einstein
relation m5bD, b51/kBT. The total current through the
channel is given by

I ~x!5 f ~x!@mFr~x!2D]xr~x!#. ~39!

Introducing an effective one-dimensional particle dens
n(x)5 f (x)r(x), we may rewrite Eq.~39! in the following
form:

I ~x!5@mF1D]x ln f ~x!#n~x!2D]xn~x!. ~40!

For F50, the drift term in the above expression correspon
to Eq. ~36!. For simplicity, in the derivation of the effective
diffusion equation~23! with the drift and diffusion terms
given by Eqs.~36! and~37!, we did not consider an externa
force. The generalization for a nonzero external force
straightforward and the strict derivation leads to a modifi
tion of the drift term~36! va→va1mFa in exact correspon-
dence with the heuristically derived Eq.~40!.

Below we shall consider the stationary diffusion regim
where the currentI (x)5I is constant. In the drift term~40!
of the effective equation for diffusion through the chann
the cross-section variations of the original boundary probl
enter as an intrinsic force field that corresponds to an ef
tive potential energyU(x)52kBT ln f(x). As is known
@12,13#, the stationary one-dimensional diffusion problem
an arbitrary potential field allows for an exact solution. W
shall derive explicit expressions for the current flowin
through the channel under the applied force. We shall a
demonstrate a difference between responses of open
closed channels.

B. Open channel

Consider a channel that connects two reservoirs wit
given particle densityr0. Integrating Eq.~39!, we obtain the
following general solution:

r~x!5r~0!exp~2bFx!2
I

DE
0

x dx8

f ~x8!
exp@2bF~x2x8!#.

~41!

Using the conditionr(0)5r(L)5r0, we arrive at the ex-
pression for the current flowing through the open channe

I 5Dr0

12exp~2bFL !

E
0

L dx

f ~x!
exp@2bFx#

. ~42!

In case of a small external field, whenFL!kBT, Eq. ~42! is
approximated by the linear response expression:

I (1)5
Dr0F

E
0

L dx

f ~x!

. ~43!
8-5
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V. I. YUDSON AND P. REINEKER PHYSICAL REVIEW E64 031108
Note the following remarkable fact: within the framework
the standard linear diffusion equation, where the bare mo
ity and diffusion coefficient are independent of the exter
force, the nonlinearity of the response current~42! is caused
only by variations of the channel cross sectionf (x). For a
channel with a constant cross section,f (x)5 f , the response
~42! coincides with the linear expression~43! for an arbi-
trary force F.

The physical mechanism of the nonlinearity is a change
the particle density inside the channel under the action o
external force. For further references we introduce an ‘‘av
aged’’ particle densityr̄

r̄E
0

L

dx f~x!5N5E
0

L

dxr~x! f ~x!, ~44!

whereN is the number of particles inside the channel. Us
Eqs.~41! and ~42!, we obtain

r̄5
N

E
0

L

dx f~x!

, ~45!

N5r0E
0

L

dx f~x!exp~bFx!F 12
12exp~2bFL !

E
0

L dx8

f ~x8!
exp~2bFx8!

3E
0

L

dx f~x!exp~bFx!E
0

x dx8

f ~x8!
exp~2bFx8!G . ~46!

In the equilibrium~in the absence of the external forceF),
the averaged particle density~45! coincides with the particle
density in the reservoirs,r̄5r0 for any channel cross sectio
f (x). For a channel with a constant cross sectionf (x)5 f ,
the equalityr̄5r0 holds also for a nonzeroF. However, the
equality breaks down for channels of variable cross sect
where the averaged densityr̄ ~45! depends onF.

C. Closed channel

In contrast to the previous case of an open channel,
number of particles in a closed channel does not depen
the applied field. The field applied along the channel infl
ences only the spatial distribution of particles. The latter
given by the Eq.~41! with the periodic boundary condition
r(0)5r(L) @instead of two conditionsr(0)5r(L)5r0 at
the edges of an open channel#. Another condition is given by
Eq. ~44!, wherer̄ should be considered as a given quant
~we shall mark it with subindex ‘‘c’’ to remind of the closed
channel!. With the use of these conditions we obtain t
following expression for the current flowing along the clos
channel:
03110
il-
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I 5D r̄c

12exp~2bFL !

E
0

L dx

f ~x!
exp~2bFx!

E
0

L

dx f~x!

3F E0

L

dx f~x!exp~bFx!2
12exp~2bFL !

E
0

L dx

f ~x!
exp~2bFx!

3E
0

L

dx f~x!exp~bFx!E
0

x dx8

f ~x8!
exp~2bFx8!G21

.

~47!

In the limit of a weak external field (FL!kBT), the linear
response of the closed channel coincides with the co
sponding expression~43! for the open channel, wherer0

should be replaced byr̄c .
Similarly, for the case of a channel with constant cro

section@ f (x)5 f #, the response~47! to an arbitrary fieldF
coincides with the corresponding linear response express
quite analogously to the previously considered situation
an open channel. This has a natural explanation: a unif
field F applied to a channel of constant cross section does
change the uniform particle distribution so that the induc
current is linear inF.

However, in general, the functional dependences of
induced current~47! on F in open, Eq.~42!, and closed, Eq.
~47!, channels are basically different. This difference exhib
in the nonlinear regime.

Note that using Eq.~45! for the averaged density inside a
open channel, the expression~42! for the induced current
may be represented in the form~47!. This means that being
written in terms of actual averaged densities (r̄ and r̄c , re-
spectively!, the expressions for induced currents in an op
and a closed channels coincide. But the coincidence is o
formal, because the quantitiesr̄ and r̄c have quite different
behavior: the former one does and the latter one does
depend on the external fieldF. For instance, if the closed
channel has been originally in equilibrium with a reservoir
particles with densityr0 and has been isolated from the re
ervoir before applying the external force, the averaged d
sity inside the closed channel would ber̄c5r0, and obvi-
ously, expressions~42! and ~47! for the induced currents
would be completely different.

VI. DISCUSSION AND CONCLUSION

We have studied ‘‘confinement’’ effects in diffusion o
classical particles in channels with varying boundaries. T
problem is characterized by the Neumann boundary co
tion ~zero normal flux! in contrast to the Dirichlet boundar
condition~zero function! for the quantum confinement prob
lem. Eliminating transverse modes, we have derived an
fective diffusion equation~23! that describes particle propa
gation in an unbounded space of reduced dimension.
equation contains a spatially modulated diffusion coeffici
8-6
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and a frozen field@Eq. ~24! or ~36!# of drift ‘‘forces’’ ~veloci-
ties!, which stem from boundary variations of the origin
boundary problem. Thus, the original boundary proble
Eqs.~1! and~2!, is mapped on a simpler and more customa
problem Eq.~23! of classical diffusion in an unbounded m
dium in the presence of a frozen velocity field. The arisi
velocity field @Eq. ~24! or ~36!# corresponds to potentia
flows, which is the consequence of the Hermitian nature
the original boundary problem. This reduction of the comp
cated original boundary problem~1! and ~2! may be per-
formed for small or smooth boundary variations.

We have shown that random variations of the chan
boundary result in a renormalization of an effective diffusi
coefficient for disorder averaged propagation. In particu
long-range correlated variations of the channel bound
may result in a subdiffusion regime in accordance with e
lier findings for the unbounded diffusion in the presence
random potential flows@2–4#.

Furthermore, we have considered in more detail the p
ticular case of stationary diffusion through an effective
one-dimensional channel under the action of an exte
force. Spatial variations of the channel cross-section resu
a nonlinearity of the response current~42! and~47! even for
field independent bare values of kinetic parameters~the dif-
fusion coefficient and mobility!. This effect is absent for
channels with a constant cross section where the curren
pends linearly on the applied field. The nonlinearity is cau
by the field induced redistribution of particles over the cha
nel of varying cross section.

We have shown also that there is a remarkable differe
in nonlinear responses of open, Eq.~42!, and closed, Eq.
H

A

03110
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~47!, channels to an external force. This effect~vanishing in
the linear regime! may be considered as a classical analog
a persistent difference in some physical properties of o
and closed mesoscopic samples@8,9#. The obtained results
are important for the correct interpretation of experiments
particle diffusion through channels of varying cross secti

The mobility and diffusion coefficient renormalization
caused by the channel boundary variations, may be con
ered as a classical analog to quantum weak localization
fects in channels with spatially varying confinement ener
The classical problem may arise also as a part of the qu
tum diffusion problem in disordered channels~waveguides!
with a smoothly varying boundary: the first averaging ov
the disorder leads to a finite mean free pathl and the particle
motion is described by diffusion propagators. These pro
gators, in turn, should be averaged over ‘‘macroscop
variations of the channel geometry. A related problem, t
may also be considered as the classical analog of a co
sponding ‘‘quantum’’ one, is the problem of the energy lev
statistics of the classical diffusion operator in closed samp
with corrugated boundaries and the Neumann boundary c
dition. As noted above, this problem may arise as a class
part of the quantum problem on the level statistics of
Schrödinger equation in disordered samples with bounda
smoothly corrugated on the scale of the mean free path@14#.
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