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Classical diffusion in channels with a spatially varying cross-section
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We study the diffusion of classical particles in channels with varying boundaries. The problem is character-
ized by the Neumann boundary conditi@ero normal curreftin contrast to the Dirichlet boundary condition
(zero function for “quantum confinement” problems. Eliminating transverse modes, we derive an effective
diffusion equation that describes particle propagation in the space of reduced dimension in the presence of a
frozen drift field. The latter stems from boundary variations of the original boundary problem. Boundary
variations may thus result in an appreciable change of the particle transport and, in particular, in a nonlinear
response to an external field. We show also that there is a difference between the nonlinear responses of open
and closed channels.
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I. INTRODUCTION Hermitian nature of the original boundary problem. There-
fore, long-range correlated variations of the channel bound-
Diffusion of classical particles in a spatially random time- ary may result in a subdiffusion regime in accordance with
independent velocity field continue to attract interest. Earlyearlier findings for the unbounded diffusion in the presence
studies(see[1—-4] and references thergihave revealed vari- of random potential flow$2—4]. Furthermore, we consider
ous anomalous diffusion regimes that may take place for another interesting feature of classical diffusion in channels
long-range correlated velocity field. It has been also showmwith spatially varying boundaries: a nonlinearity of the re-
[4] that the considered classical model possesses nonselfasponse to an external force, that occurs even for field inde-
eraging effects, which bear resemblance to mesoscopic ependent bare values of kinetic parameters and that is absent
fects of (quantum weak localizatior{5]. Recently this clas- for channels with a constant cross section. We also demon-
sical model has attracted renewed attention, motivated, istrate that there is a remarkable difference in nonlinear re-
particular, by the interest in properties of random non-sponses of open E¢42) and closed Eq47) channels to an
Hermitian operatord6], chemical reactions in disordered external force applied along the channel. This difference
media[7], etc. (vanishing in the linear regimebears resemblance to a dif-
In contrast to previous studies of classical diffusion inference in some physical properties of open and closed me-
random but unbounded media, here we consider a differerstoscopic samples8,9].
physical situation, namely, the classical diffusion in a chan- This paper has the following structure. In Sec. Il we per-
nel (slab, pipe, wire, etg.with time-independent spatial form a transformation of coordinates that maps the original
variations of the channel boundary. We are looking for clasproblem with the varying boundary to a problem with flat
sical analogies tgand differences withconfinement effects boundary but with modified boundary conditions. We derive
known for “quantum” particles. In the latter case these ef-equations for transverse harmonics of the Green'’s function of
fects are due to spatial variations of the energy of the particl¢éhe transformed equation, using a weak coupling between the
tranverse motioriconfinement energy These variations re- zero and nonzero harmonics. In Sec. Il we consider small
sult in the appearance of a random potential in an effectiverariations of the boundary; eliminating the nonzero harmon-
(Schralingen equation for the particle propagation along theics we obtain an effective diffusion equation for the long-
channel(in a space of reduced dimensjo®©f course, this scale limit of the original problem. This equation contains a
phenomenon is not restricted to quantum particles but ifrozen drift field as well as a spatial modulation of the dif-
common for any wave obeying the Dirichlet boundary con-fusion coefficient. In Sec. IV we consider the case of random
dition (zero amplitudg On the contrary, the classical diffu- drifts (random variations of the channel boundaayd cal-
sion is characterized by the Neumann condiiibero normal  culate corrections to the effective diffusion coefficient for
currenj at the channel boundary. We show that this leads talisorder averaged propagation. In Sec. V an effective diffu-
quite a different form of an effective equation for the motion sion equation is derived for the case of nonsmall but smooth
along the channel: there appears a space-dependent field \afriations of the channel boundary. In Sec. VI we discuss in
frozen drift forces(velocitieg. Thus, the original boundary more detail the particular case of stationary diffusion through
problem[see Eqg1) and(2) below] is mapped on the above- an effectively one-dimensional channel under the action of
mentioned problem Eq(23) of classical diffusion in un- an external force. The nonlinear current response is calcu-
bounded media in the presence of a frozen random velocitiated for open and closed channels with smoothly varying
field [Eqgs. (24) or (36)]. The arising velocity field corre- boundaries. In conclusion we summarize and discuss the ob-
sponds to potential flows, which is the consequence of thé¢ained results.
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Il. BASIC EQUATIONS takes the form

A. Formulation of the problem

; 2 2 2010 VAN

First we consider a channel in the form of a film of aver- [Zlo=D(d,+d%on~+U(p,m)]1G(p, m:p" 7")
age thicknesd., with the upper and lower boundaries =8(p—p)S(n—n")L, It (p), (7)
=fu(r) andz=f(r) (f;<f); r is a radius vector in the
d-dimensional (=2 for a film ord=1 for a surface chan-
nel) subspace orthogonal to tlzeaxis. Later in the paper we
shall consider also channels with more complicated boun
aries.

The Green’s function of the diffusion equation in the film U(p,7)=—[2(d,In f)aa+(a§ Inf)]ndlon
obeys the equation

where the factot,/f(p") on the right-hand side stems from
gthe Jacobian of the transformatié#), and the operatod is

+(,InF)2(mal 97)?+[L2IF2—1]0% o7

[—io—DV?]G(r,zr',2)=8(z—2)8(r—r") (1) ®

and the Neumann boundary conditiGrero normal current o ) o
A generalization of Eq(4) for two varying boundaries is

(n-V)G(r,zr',Z)|;cg=0 2 straightforward: n=L,(z—f)/(f,—f)). In an equivalent
form it has been used recentf{0] for studying transport

on the film boundanB. In Egs. (1) and(2) D is the bare processes in rough films, with the boundary roughness
diffusion coefficient,V = (d/dr,,d/9z), =1, ..., d;and treated as the reason of the momentum relaxation of particles
n is the normal vector to the boundary surface: (waves propagating ballistically in the bulk of the film. A set
x[— &f(r)/ara,l] We are interested in small frequency of physical problems considered 0] corresponds to the
(o<D/LZ2), long-distance |¢—r'|>L,) properties of the Dirichlet boundary condition(vanishing amplitude: g
diffusion propagator; our task is to obtain an effective equa=0) that remains invariant under the coordinate transforma-

tion for a reduced function tion. On the contrary, for the diffusive motion considered in
the present paper, we face a more complicated situation as
u(n) o q , G(rzr'.z) the Neumann boundary conditiép) is affected by the trans-
G(rr)= Ll(r) fn(r y =) (3 formation and takes the form
which describes macroscopic transport along the chaimel [(7/377—\71,(1’)19(0177? p 7' )=0 atyp=0, L,. (9)
the space of the reduced dimensibnfrom a source located
at a pointr’. In the definition(3), integration overz’ (with a Here
weight [f,(r")—f,(r")]™ 1) corresponds to a source of unit
power spread uniformly along the direction of the film,
rather than to a source concentrated at some p@istz,. V=0 v fa,f (10)
However, the difference between the two variants vanishes in 0™ L~ Li1+(a, f)z]

the macroscopic limit of interest.

Thus, the original problem is reformulated now for the flat
boundaries but with perturbation terms both in Efj.and in

In the analysis of the problem formulated in E¢E. and  the boundary condition Ed9). To develop a regular pertur-
(2), it is convenient to use a trick known in the theory of bative treatment, we introduce a Green’s functi@f’(p
light scattering from rough surfaces, namely, to perform a—p’; 7%, n') of an unperturbed problem. This function is de-
coordinate transformation that makes the boundaries flat. Teermined by the equation
simplify the following expressions, below we restrict the
derjvation fco the simpler case where only the upper boundary [—iw— DV?]Q(O)(p— oimn)=86—¢€), (1D
varies, while the lower one is flaff,(=0). In this case, we
use new coordinates:

B. Derivation of basic equations

(where shortened notatior&s=(p, 7) and Vi=d%+ 6%/ dn?
Pa=Vu: m=2L,IT,(r), (4) are introducedand by the Neumann boundary condition at
the flat boundaries
(the lower index ‘U” will be omitted below) which make the
boundaryB flat (B=B,.+B_; B,: n=L,; B_: =0). alanGO(p—p":n,7')=0 atn=0, L,. 12
Equation(4) induces the transformation of derivatives: 7 (p=p5m. ') 7 ‘ (

alar ,=d,—(a,Inf)ynaldn;, aloz=(L,I1)alan, (5) Following th% usual methotee, e.g., Re[_’Ll]) we multiply
Eq. (7) by G(® and Eq.(11) by G, and integrate their differ-

whered,=aldp,. In the new coordinates, El) for ence. With the use of Green’s theorem and the boundary
conditions(9) and (12), we arrive at the following integral
Gg(p,mp',n')=G(rzr',z) (6)  equation forgG:
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HEEY=GOp—p":n,n")L,IT(p") <1. Taking into account terms up to second order in the
small quantity|d,f|<1 we obtain the following equations

. S for the transverse harmonics:
+Df dpi[GO(p—prim 1)V, (1)

L, .
e —iw—D@P——=V S(p.p'
XG(&: 6117275+ D [ 08GO p—puimm) { @~ D"z, VP [Aer)
x U £, 13 N L, » -
(£)68:8) 49 =Py 20| 1 5 V() + 0o
Now we sketch main steps of the further evaluation. In the P
basis of eigenstates of the unperturbed problem, the function . ,
GO(p—p':m,m') may be represented as an,o (=1)"Gu(pp"), (18)
(0) ’ ’ 1 (0) ’ 2 (0) ’
GOp=p'sm.n") =66 (p=p)+ = 2 G (p=p") o, wPn?
; 2 7>0 —iw=D3d+D——|Gn(p.p")
. - f<(p)
a a
xco{ Ln)cos( L77 ) (14 DL
Zy ’
2 2 =) VL0 (19
where the Fourier transform of the functioG§”(p) is P
GO(q)=[~iw+ Do+ DrnYL2] L, (15  With Uy=—[2(3,Inf)d,+ (A Inf)].

In the following section we consider the case of small
Integrating Eq.(13) over ' we obtain an equation for the channel boundary variations. Later we shall also discuss the
function case of arbitrary but smooth boundary variations.

, L, o Ill. SMALL BOUNDARY VARIATIONS
g(p.p ;77)=f g(p,mp n')dn'IL,. (16)
0 A. Effective diffusion equation

The equation foG(p,p’; ) derived in this way differs from To treat the case of small boundary variations we write
Eg. (13 only by the first term on the rhs: the function the functionf(r), determining the channélippe) boundary
GO(p—p':m,7') is replaced by its zero transverse har-z=f(r), in the form,

A (0) ; reoy
monic Gy ’(p—p’). Looking for G(p,p’; ) in the form F(r)=L[1+h(n)], 20

1 2 n
Gpp':im)= L_g(p,er O E gn(p,p’)cos(g)' with h<1. The coupli.ng of diﬁgrent transverse harmonics,
z zn>0 z G(p,p") and G,(p,p’) is determined by the small function
(17 h(r). From Eq.(18) we find for G,(p,p’):

we obtain an infinite system of coupled equations for trans- (—~1)"D

verse harmonic§(p,p’) andgn(p,p’). Note that because of G (p,p')= - J dplgﬁo)(p— Pl)\A/LZ(Pl)g(P,P’),

the weak convergency of the series ELj?) near the bound- z

ary, one may not interchange the summation ovand dif- (21)

ferentiation with respect tg. Therefore, before applying Eq. valid in the first order inh. Using Eq. (19) to substitute

(17), some care is needed with respect to terméfJ_oﬂwat nonzero harmonic§,(p,p’), which enter Eq(18), we find
contain denvapves with respect tg: using |r)tegrat|on by eventually a closed equation fG(p,p’) valid up to the sec-
parts, the action of thes@ransversg derivatives may be ond order inh. Comparing Egs(3), (16), and(17), we find

transferred to the unperturbed funCti@”‘o?(P—P'{’?”?l)- that G(p,p’) differs only by a factor from the function of
Surface terms arising in the course of the integration by partgyerestG(r,r’) :

are added to those present already in Bd). Due to the

elimination of fast transverse derivatives, this integration by G(r,r")y=[L,/f(r)]G(r,r"). (22

parts leads to a system of equations fG(p,p’) and

Gn(p,p’), with improved convergence with respect to the This factorL,/f(r) stems from the Jacobian of the coordi-

perturbative exclusion of nonzero transverse harmonicgate transformation(Note, that after eliminating the trans-

Gn(p.p") with n>0. verse coordinate, we do not need to distinguish anymore be-
Here we apply this general routine to derive an effectivetween coordinates andp in the longitudinal subspace of the

equation for the zero transverse harmogiig,p’). This is  reduced dimensiod). Using Eq.(22) we arrive at the fol-

possible if variations of the channel boundary are relativelylowing equation forG(r,r’):

small (of|/f<1) or smooth on the scale ofL, A

(L, 0,f|<f). The two conditions may be written as,,f| {—iw+0,[va(r)—D, gdgl}G(r,r")=6(r—r"). (23
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In Eq. (29 DL,0,9
Sp(0)= g 2 Kkgl(OF (k=) (30)
vo(1)=D[1-h(1)]a.h(r), (24) ‘
. A In the macroscopic limitw, q—0, the self-energy part is
and the symbolic operator notati@n, zdg . .. means quadratic ing: 3~ — 6Dq?, which leads to the renormaliza-
tion of the bare diffusion coefficierD: D—Dz=D + éD.
f)a 9,G1(r.r' :Df dry{8, 6(r—r From Egs.(29) and (30) we obtain the following contribu-
[Dap7gGr.r") 9a,p0(r 1) tions to 8D = 8D, + 6Dp

—DLAdN(N]F(r—ry)

oD, 1 1
, =——2 I'(k)=—=T'(r=0 31
XLaagh(r) 1,6y, (25 b ave WTTglr=0 @D
where the Fourier transform of the functiéiip) is given by  and
oD DL
2 ! == = 2 KK (K) (32)
E(a)=— . 26 D av '
(@=, nZo [—iw+Dg?+ 72n2D/L2] (29 X

The validity of Eqs.(31) and(32) is restricted to the pertur-
The function F(p)=G*(p,0;0)~G{’(p) decays fast at pative case of relatively small corrections. The relative im-
distancep>L,. portance of two contributions Eq&31) and(32) depends on
The effective diffusion equatiof23) guarantees the par- the ratio between the average channel thickrigsand the

ticle conservation law. Equation®@3)—(25) fulfill the pro-  correlation lengtha of the boundary variations.
gram formulated in the Introduction: the complicated prob-

lem of diffusion in a @+ 1)-dimensional channel of variable 1. a<lL,
thickness is reduced to the simpler problem of diffusion in a
uniform d-dimensional layer in the presence of a frozen field.
The latter class of problems allows for a regular field-
theoretical treatment. The frozen fiel@4) is a potential
field, which corresponds to the model 3 [#,4]. In the
present section the reduction has been performed for the case 6Dp /D=~ LZ/(dV)E kI'(k). (33
of small boundary deviationsh|<1. K

Now we use Eqs(23)—(25) to calculate a correction to
the bare diffusion coefficient.

In this case of short-range variations the summation over
nin Eq. (26) may be substituted by an integration, so that
F(k)~F(0)=1/(Dk) and we obtain,

This contribution is by a factot.,/a>1 greater than Eq.
(31). This means that for short-range boundary variations the
“fluctuations of the diffusion coefficient”[ h-dependent

B. Corrections to the diffusion coefficient terms in(25)] in Eq. (23) prevail.

Consider random variations of the channel thickness,
which are of Gaussian nature with zero averdgér))=0
and the correlation function The summation ovek in Eq. (32 is restricted tok
<lla<1/L,, so that~(k)~F(0)=L,/(3D), and we obtain,
(h(Nh(r"))=T([k]), (27)

2. a1,

. . . sDp L7 ,
wherek is a wave vector in the longitudinal subspace. We —_— = 2 keT'(k). (34)
, A D 3dV %
look for the averaged Green’s function

, , Ao a1 , Apparently, this contribution is by a factorL{/a)’<1
G(r=r")=(G(r,r")=[G"=X]"*(r—r"), (289 smaller than Eq(31). We have arrived at the conclusion that
) ) ) for relatively smooth variations the drift term in E3) is
where G%(q) =[ —iw+Dg?] is the unperturbed solution 10 the leading one, while the-dependent terms in E¢25) are
Eq. (23) (for h=0), and the self-energy pakt is caused by jirelevant. This statement remains valid also for nonsmall but
the perturbatiorii.e. h-dependent termsin the second order smooth boundary variations that are considered in the fol-
in the small variatiorh, =%, + X, is given by the sum of  |owing section. Note that Eq31) together with the expan-
contributions from the drift term and from thedependent  gjgon > ~q? is valid under the assumption that sums over
part on the rhs of Eq(25), respectively. These contributions \yave vectork are well convergent at smail (convergence
have the form at largek is always implied. This means that the boundary
D? variations are not too long-range correlated in space. The
- _ 01— case of anomalously long-range correlatioresg., I'(k)
(= ; Kakgl (K) (ko= 0a)8sG (k=) (29 P> e two-dimensional d=2) case, which corre-
sponds to the model 3 ¢2,4]] needs more care. The contri-
and bution of the drift term not only is the dominant one, but it is
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so large that the perturbation treatment should be substituted jx(X)=uF p(x)— D dyp(X), (39
by a more sophisticated renormalization grdiR) analy-
sis. Due to the established mapping of the original problenwhere we introduced also a constant fofeeacting on the
of the variable thickness channel on the problem of the difparticles;u is the mobility connected with by the Einstein
fusion in an unbounded space with frozen random drifts, theelation u= 8D, B=1/kgT. The total current through the
corresponding RG analysi®—4] developed for the latter channel is given by
problem is directly applicable to the former problem.

L(x)=f(X)[uFp(x) =D dyp(X)]. (39

Introducing an effective one-dimensional particle density
In contrast with previous section, here we do not assum@(x) =f(x)p(x), we may rewrite Eq(39) in the following
smallness of boundary variations. Instead, we assume tHerm:
function f(r) to be smooth on the scalg~f: d,f<1. This

IV. SMOOTH BOUNDARY VARIATIONS

allows for the adiabatic approximation in EA.9), [(X)=[uF+DayInf(x)In(x) =Ddxn(x).  (40)
(—1)"L For F=0, the drift term in the above expression corresponds
Ga(pp ) =———V_ (P)G(p.p). (35)  to Eq.(36). For simplicity, in the derivation of the effective
m°n? ‘ diffusion equation(23) with the drift and diffusion terms

) ) ) given by Eqgs(36) and(37), we did not consider an external
Using Egs.(35), (18), and (22), we arrive at an effective force. The generalization for a nonzero external force is
diffusion equation ind-dimensional subspace. This equation strajghtforward and the strict derivation leads to a modifica-
has the standard forr23), with the drift velocity and the tjon of the drift term(36) v ,— v, + uF, in exact correspon-
diffusion coefficient determined by dence with the heuristically derived E@0).

Below we shall consider the stationary diffusion regime,
vo(r)=Dd,Inf(r) (36 \Wwhere the currenk(x) =1 is constant. In the drift ternt40)
of the effective equation for diffusion through the channel,
the cross-section variations of the original boundary problem
A enter as an intrinsic force field that corresponds to an effec-
Do, p(1) =Dl 8,p= daf(r)dpf(r)/3]. (37) tive potential energyU(x)=—kgTInf(X). As is known

- )[12,133, the stationary one-dimensional diffusion problem in
In case of small and smooth boundary variations, these ex= ! S .
an arbitrary potential field allows for an exact solution. We

pressions coincide with EG&24) and (25), respectively. As %hall derive explicit expressions for the current flowing

has been shown in the previous section, in case of smoott .

e : . fhrough the channel under the applied force. We shall also
variations the space-dependent fluctuations of the d'ﬁUS'O@iemonstrate a difference between responses of open and
coefficient are irrelevant, and the macroscopic kinetic coef- P P
e o . closed channels.
ficients are mainly influenced by the drift term.

It may be shown that Eq36) remains valid also for the
case of smooth variations of both upper and lower channel B. Open channel
boundaries with the functiof(r) equal to the variable chan-  Consider a channel that connects two reservoirs with a
nel thickness. In general, channels bounded in several dgiven particle density,. Integrating Eq(39), we obtain the
mensions with smoothly varying boundaries are described bjbllowing general solution:
the same effective diffusion equati¢23) with the drift term
(36), wheref(r) is the varying cross section of the channel. | (xdx )

Below we shall consider an important particular case of a P(X)=p(0)exp(—BFx)— BJO f(x,)exp:—BF(x—x )]
one-dimensional channetl& 1) that allows for a more de- (41)
tailed analytical treatment.

and

Using the conditiono(0)=p(L)=py, we arrive at the ex-
V. ONE-DIMENSIONAL CHANNEL WITH SMOOTHLY pression for the current flowing through the open channel,
VARYING CROSS SECTION
1—exp(—BFL)

A. Current through the channel I=Dpg

L ax
Consider a one-dimensional channel of lengthwith f f(—x)exp[—,BFx]
smoothly varying cross sectiofi(x) (x—the coordinate 0

along the channel, 4.@X<L)' For this pa_rtlcularly simple In case of a small external field, whé&i <kgT, Eq.(42) is
case we shall rederive the basic equations by means of a . ; T

) ) ; . pproximated by the linear response expression:
simple physical reasoning. Namely, we take into account tha

(42)

for a long channel l(>L,) the densityp of diffusing par- DpoF

ticles is almost constant in the transverse direction and is a W=_—"00 (43
smoothly varying functiorp(x) of the longitudinal coordi- f"ﬂ

nate. The current density idirection is given by o f(x)
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Note the following remarkable fact: within the framework of — 1—exp—pBFL) L
the standard linear diffusion equation, where the bare mobil- | =Dpc——- de(X)
ity and diffusion coefficient are independent of the external f T )exp( ﬁFx)

X

force, the nonlinearity of the response currétf) is caused
only by variations of the channel cross sectiiix). For a

channel with a constant cross sectié(x) =f, the response f dxf(x)exp BFx) — —exp( BFL)
(42) coincides with the linear expressid¢d3) for an arbi-
trary force F f(x) Ty EXP(— BFX)

The physical mechanism of the nonlinearity is a change of
the particle density inside the channel under the action of an
external force. For further references we introduce an “aver- f dxf(x exp(,BFx)f —exp( BFX")

aged” particle densityT

-1

(L L (47)
pJ dxf(x)=N=J’ dxp(x)f(x), (44)

0 0 In the limit of a weak external fieldRL<kgT), the linear
response of the closed channel coincides with the corre-
whereN is the number of particles inside the channel. Usingsponding expressio43) for the open channel, wherg,
Egs.(41) and(42), we obtain should be replaced by, .

Similarly, for the case of a channel with constant cross
o N section[ f(x)=f], the responsé47) to an arbitrary fieldF
=— (45 coincides with the corresponding linear response expression,
J' dxf(x) quite analogously to the previously considered situation of
0 an open channel. This has a natural explanation: a uniform
field F applied to a channel of constant cross section does not
change the uniform particle distribution so that the induced
1-exp(—BFL) current is linear irF.
L dx’' However, in general, the functional dependences of the
———exp(— BFx’) induced currenf47) on F in open, Eq(42), and closed, Eq.
0 f(x’) (47), channels are basically different. This difference exhibits
in the nonlinear regime.
exp(—BFx') |. (46) Note that using Eq45) for the averaged density inside an
of(x") open channel, the expressioh?) for the induced current
may be represented in the fori#7). This means that being

written in terms of actual averaged densitigsand p., re
spectively, the expressions for induced currents in an open
and a closed channels coincide. But the coincidence is only

formal, because the quantitipsand p, have quite different

L
szofo dxf(x)exp BFx)| 1—

f dxf(x)exp(ﬁFx)f

In the equilibrium(in the absence of the external forEg,
the averaged particle densi@5) coincides with the particle

density in the reservoirg= p, for any channel cross section pepayior: the former one does and the latter one does not
f(x). For a channel with a constant cross sectigr)=f,  genend on the external field. For instance, if the closed
the equalityp= p, holds also for a nonzere. However, the  channel has been originally in equilibrium with a reservoir of
equality breaks down for channels of variable cross sectiorparticles with density, and has been isolated from the res-
where the averaged densﬁ/(45) depends orf. ervoir before applying the external force, the averaged den-
sity inside the closed channel would lpg=py, and obvi-
ously, expressiong42) and (47) for the induced currents

would be completely different.
In contrast to the previous case of an open channel, the

number of particles in a closed channel does not depend on

the applied field. The field applied along the channel influ- VI. DISCUSSION AND CONCLUSION

ences only the spatial distribution of particles. The latter is \We have studied “confinement” effects in diffusion of
given by the Eq(41) with the periodic boundary condition ¢|assical particles in channels with varying boundaries. The
p(0)=p(L) [instead of two conditionp(0)=p(L)=po at  problem is characterized by the Neumann boundary condi-
the edges of an open chanhéinother condition is given by  tion (zero normal flux in contrast to the Dirichlet boundary
Eq. (44), wherep should be considered as a given quantitycondition(zero function for the quantum confinement prob-
(we shall mark it with subindex¢” to remind of the closed lem. Eliminating transverse modes, we have derived an ef-
channel. With the use of these conditions we obtain thefective diffusion equatiori23) that describes particle propa-
following expression for the current flowing along the closedgation in an unbounded space of reduced dimension. The
channel: equation contains a spatially modulated diffusion coefficient

C. Closed channel
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and a frozen fieldEq. (24) or (36)] of drift “forces” (veloci-  (47), channels to an external force. This effézanishing in
ties), which stem from boundary variations of the original the linear regimgmay be considered as a classical analog of
boundary problem. Thus, the original boundary problema persistent difference in some physical properties of open
Egs.(1) and(2), is mapped on a simpler and more customaryand closed mesoscopic samp[&s9]. The obtained results
problem Eq.(23) of classical diffusion in an unbounded me- are important for the correct interpretation of experiments on
dium in the presence of a frozen velocity field. The arisingParticle diffusion through channels of varying cross section.
velocity field [Eq. (24) or (36)] corresponds to potential The mobility and diffusion coefflc_lent renormallzatlon,_
flows, which is the consequence of the Hermitian nature of@used by the channel boundary variations, may be consid-
the original boundary problem. This reduction of the compli-€€d @s a classical analog to quantum weak localization ef-
cated original boundary problerfi) and (2) may be per- fects in channels with spatlally varying confinement energy.
formed for small or smooth boundary variations. The c!ass[cal problem may arise also as a part of t_he quan-
We have shown that random variations of the channe}u.m diffusion p“’b'e”? in disordered Cha_””“%"”sa"egl!'de’ﬁ
boundary result in a renormalization of an effective dil‘fusionv\”th a smoothly varying t_)oundary. the first averaging over
coefficient for disorder averaged propagation. In particularthe disorder leads to a finite mean free platind the particle

long-range correlated variations of the channel boundarg‘Otion is described by diffusion propagators. These propa-

may result in a subdiffusion regime in accordance with ear atprts_, n tﬂﬂ SEOUId lbe avertageg 0\|/etr dmacgi)scopt)rl]ct
lier findings for the unbounded diffusion in the presence of/ariations ot the channel geometry. A related probiem, tha
random potential flow§2—4]. may also be considered as the classical analog of a corre-

Furthermore, we have considered in more detail the pargpo_nd.ing ‘quantum’ Oone, is th? problem of.the energy level
ticular case of, stationary diffusion through an effectiverSt.""t'St'CS of the classical .d|ffu3|on operator in closed samples
\1\Ilth corrugated boundaries and the Neumann boundary con-

one-dimensional channel under the action of an externa ition. A ted ab thi bl : lassical
force. Spatial variations of the channel cross-section result iﬁi' lon. AS noted above, this problem may arise as a classica
art of the quantum problem on the level statistics of the

a nonlinearity of the response curréd®) and(47) even for part ot S ; .
field independent bare values of kinetic parametts dif- Schralinger equation in disordered samples with boundaries

fusion coefficient and mobility This effect is absent for smoothly corrugated on the scale of the mean free fiath

channels with a constant cross section where the current de-

pends linearly on the applied field. The nonlinearity is caused

by the field induced redistribution of particles over the chan- The work of V.I.Y. was supported in part by the Deutsche

nel of varying cross section. Forschungsgemeinschaft, the Japanese Ministry of Educa-
We have shown also that there is a remarkable differencton, Science, and Cultur@&rant No. 12640338 and RFBR

in nonlinear responses of open, B42), and closed, Eq. Grant No. 98-02-16062.
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